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LElTER TO THE EDITOR 

Fractional statistics and the Z, Potts model 

P Bhattacharyya and Spenta R Wadia 
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005 ,  India 

Received 15 January 1985 

Abstract. We construct a generalised Jordan-Wigner transformation which converts the 
one-dimensional quantum 2, Potts Hamiltonian into one involving fermions obeying 
fractional statistics. A naive, scale-invariant continuum limit of the discrete model is taken. 

There has been a recent resurgence of interest in 2~ statistical mechanical systems 
which has come about because of the use of conformal invariance in classifying critical 
phenomena in such systems (Polyakov 1970, Belavin et a1 1984, Friedan et al 1984). 
It is well known that at a critical transition, where the correlation length diverges, an 
underlying continuum theory can be associated (Kogut 1979) with the system. For 
instance, as shown by Ferrell (1973), corresponding to the 2~ Ising model there exists 
a free I D  Dirac equation such that the free energy per site of one is the ground state 
energy of the other. It is therefore of considerable interest to construct continuum 
theories which fit this classification scheme. Furthermore, in I D  the Lorentz spin is 
not restricted to take on only integral or half-integral values but can be continuously 
varying. Particles obeying fractional statistics in two space dimensions have also been 
invoked in the explanation of the fractional quantised Hall effect (Halperin 1984). 
The work described in this letter was motivated not only for a search of models to fit 
this classification scheme but also to explore these new degrees of freedom. 

For this purpose, we study the Z3 Potts model (Wu 1982) and construct the 
underlying continuum theory which emerges at criticality. The model is of importance 
in its own right as it has been solved only at criticality and, according to Baxter (1982), 
the only hope of solving it away from criticality might be through a generalisation of 
algebraic methods (Schultz er a1 1964) similar to that used by Onsager for solving the 
zero-field 2~ Ising model. Such a generalisation is also camed out here. The anisotropic 
Z3 Potts Hamiltonian is defined by 

H = - 3 ~ . x  C ~n , ,n ,+ i -3~y  an,,n,+p, n, =o, 1,2. (1) 

T = eZB[ I + e-38 ( P +  P71, 

exp[P(P+ Pt)l = f ( P ) + g ( P W +  Pt) ,  

~ x P ( - ~ P )  = g ( h / f ( B )  = [exp(3P) - 11/[exp(3gl) +21 

I I 

Consider first the one-dimensional case, The transfer matrix is given by 

where Pln) = In + l), P3 = 1. We can define a dual coupling /? through 

where j ( P )  and g ( $ )  can be explicitly calculated. Duality demands that 
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which is the usual relation obtained by graphical methods (Wu 1982). In two 
dimensions, the transfer matrix of the model can be written in the limit of extremely 
anisotropic coupling constants (Kogut 1979) as 

T = exp( -H), (4) 

where 

In this limit, the contribution arising out of the non-commutativity of the two terms 
can be neglected. The self-duality of the Hamiltonian ( 5 )  can be made manifest in 
exact analogy with the Ising case. The critical transition takes place at A = 1. 

From our definitions of the operators P and Q, we see that they satisfy the algebra 
QxPx = zPxQx ( z  = exp(2ai/3)) on the same site. On different sites they commute. The 
key step now is to construct the analogue of the Jordan-Wigner transformation which, 
for the Ising model, transforms the Pauli matrices into fermions. In order to do so 
here, we proceed in close analogy with the Ising case. 

It is most convenient to proceed in two stages. Following Itzykson (1982), we first 
construct a set of unitary operators { T , ( x ) }  (a = 1-3) such that r i ( x )  = 1. Explicitly, 
we have 

In terms of these operators the I D  quantum Hamiltonian can be written as 

H = -A ( ~ , ( x ) T : ( x +  i ) + r , ( x +  i ) r : ( x ) ) - C  ( r : (~) r , (~)+r : (~) r , (~) ) .  (7) 

We next make a canonical transformation which takes Q to Pt  and P to Q. The usual 
Jordan-Wigner transformation can now be generalised in two different ways. In the 
first route (Alcaraz and Koberle 1981), the operators { T , ( x ) }  can be expressed in terms 
of parafermions (as defined by Fradkin and Kadanoff (1980)) which obey the relation 
C 3 ( x )  = 0. This, however, has the difficulty that the Hamiltonian given by (6) immedi- 
ately becomes nonlinear and it is not obvious how to proceed further. We follow an 
alternative route in which { T , ( x ) }  can be represented in terms of objects which obey 
the Pauli principle (i.e. C ' ( x )  = 0) but have an algebra different from the usual fermionic 
one. These are given by 

where 

In terms of these, we have 
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The Ising Hamiltonian is recovered by inserting (9) into (6) with z = -1 and noting 
that C,(x) = C:(x). Corresponding to this last property, the operators C,(x) satisfy 
C2(x)C,(x) = C:(x) and cyclic permutations. Also C,(x)C2(x) =O.  As a result of this 
property only two of the variables are independent. The algebra satisfied by these 
operators can be easily obtained from their definitions in terms of P and Q: 

c;(x)c,(Y) = (ze(x-y)+z*8(y-x))cp(y)cL(x), x z y .  (10) 

Using the various properties of the operators Cu(x), we can rewrite (7) as 
3 3 

H = -A (ZSC;(X+ l)Cp(X)+ HC) - C ( z"- l+  z*"-')c;(X)C,(X). (1  1) 
a , p = l  x a = l  x 

In order to take the naive continuum limit, we first rearrange terms as follows. Write 

C r : ( x +  i ) r , ( x ) = f C r : ( x +  i ) r , ( ~ ) + ; C r : ( ~ ) r ~ ( ~ -  1)  (12) 
X X 

where we have neglected a surface term. Next add and subtract the contribution 

AZ r:(x)r,(x)+Az* r:(x)r2(x).  
X X 

Remembering that C;(x)C,(x) = 0 for a # p, we can rewrite (1 1) in the form 

H = -A Z*"C;(X)A~C~(X)+A C zaCL(x)A;Cs(x) 
3 3 

x a , p = i  x q p = i  

- ( 1  + A z )  2 zp-I c;(x)Cp(x) - ( 1  + Az*) 1 z*" - 'CL(X)C~(X)  
x "3 x 0 

(13) 

where Af(x) =f(x+ 1) -f(x) and A; =f(x) -f(x- 1). We now use the property 
C:(x)C:(x) = C,(x) to simplify the last term a little. Also, we set A = 1 in the second 
term of (13) which amounts to neglecting an infinite constant. We now have 
H 3 

A x n , 0 = 1  
-=C C (z*T;(x)A,c,(x) - z~c:(x)A;c,(x)) 

We can now proceed to take the naive continuum limit by defining 

Ca(X) =J;; $clp(x) (a = 1,2). (15) 
In that case, we can drop all terms involving (say) C3 and C: since, being composed 
of the other two, they are of higher order in a and will scale out of the problem when 
we take a + 0. We also write the difference operator Ax = ad, and take the limit a + 0 
such that ha  = K - '  is held fixed. After these manipulations, we get 

H =  d x H ( x ) ,  I 
where 
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The Hamiltonian (16) is by construction conformally invariant and we conjecture that 
K = 1 corresponds to the true continuum limit of the Z3 Potts model. The Hamiltonian 
(16) is completed by the commutation relations 

(17) 
d & X ) 4 p ( Y )  = ( Z w - Y ) +  z * w  - x ) ) % ( Y ) $ : ( x ) ,  
+:(x) = o =  $C(X).  

x + Y ,  

Bosonisation of the model (16), (17) may lend further insight to its critical properties 
and complete solution. 

We thank R Anishetty for a useful discussion. 

No?e added in proof: A similar fermionisation scheme, in a different context, has also been obtained 
independently by Truang and de Vega (Paris Preprint). 
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